Когда теории тектоники плит ещё не было, шла дискуссия о том, движутся ли континенты Земли. Самое подробное и самое известное обоснование движению континентов было дано Альфредом Вегенером в начале XX века. Ему справедливо возразили, что он не смог предложить механизма, стимулирующего этот «дрейф континентов».
Исландия — часть срединно-океанического хребта, где литосферные плиты расходятся в стороны и образуется новая кора, вздымаясь над уровнем моря. (Фото Howard Ignatius.) Пробел в 1928 году восполнил Артур Холмс: конвекция породы в мантии тянет за собою литосферные плиты. Когда тектоника плит была принята в качестве основной геологической теории, это объяснение получило всеобщее признание. Однако альтернативные гипотезы продолжали появляться. Одна из них гласит, что понижение океанических плит в зонах субдукции (из-за разницы в плотности) производит силу, которая растягивает часть плиты, всё ещё находящуюся на поверхности. Когда плиты перемещаются, они тянут за собой соседнюю мантию.
Сегодня благодаря очень точным наблюдениям у исследователей есть доказательства, что по крайней мере в одном месте именно мантия стимулирует движение плиты, а не движима ею. Если то же самое будет обнаружено в других местах, нас ждёт решение одного из самых старых вопросов в геологической теории.
По сути, дискуссия ведётся о роли этих факторов. Можно сосредоточиться на одной из частей вопроса, а именно на том, как в мантии поднимается горячая порода, что приводит к вулканической активности в срединно-океанических хребтах. Причина в самой мантии или в движении океанической плиты, из-за которого возникает разрыв в земной коре, заполняющийся горячей породой из мантии?
Ответа до сих пор нет отчасти из-за того, что изучение мантии — дело нелёгкое. Зато у нас есть постоянно совершенствующаяся технология сейсмического исследования строения мантии. И с её помощью группа японских учёных во главе с Сюити Кодайра сумела составить очень подробную карту древнего участка коры у побережья Японии.
Геологи провели измерения вдоль двух линий — параллельно срединно-океаническому хребту (сейчас он лежит ниже Японии), где формировалась кора, и перпендикулярно к нему. Выявлено местоположение показательных слоёв в породе, которые отразили часть сейсмической энергии. Кроме того, была учтена скорость прохождения сейсмических волн через различные области: этот показатель свидетельствует о составе, структуре и температуре породы.
Полученные изображения продемонстрировали ряд равномерно сменяющих друг друга поверхностей, наклонённых по отношению к древнему хребту, как книги на полупустой полке. Они начинаются на границе мантии и идут в океаническую плиту. Верхняя часть мантии обладает большой «сейсмической анизотропией», то есть сейсмические волны проходят быстрее в одном направлении, чем в другом.
Анизотропия — результат, вероятно, выравнивания минеральных кристаллов, составляющих породу мантии. Почему они выровнены? Представьте себе, что вы добавили в тесто карамельную крошку. Если вы раскатывали тесто в одном направлении, то расположение крошки отразит этот факт. Следовательно, мантию тоже растягивали в одном направлении.
Из сказанного следует, что мантия и кора двигались в одном направлении (прочь от срединно-океанического хребта), но с различной скоростью. Кто же был быстрее, кто кого тянул за собой?
Тут-то исследователям и помогли наклонённые поверхности. Их замечали и прежде, объясняя по-разному: разломы, слои базальта, результат различия в скорости мантии и коры. Новые детали говорят в пользу последнего из вариантов: поверхности напоминают хорошо известный тип деформации, вызываемый напряжением сдвига.
В данном случае мантия перемещалась быстрее, чем океаническая плита. Иными словами, мантия тащила за собой плиту, а не наоборот. Мантия именно приводила в движение процессы в срединно-океаническом хребте, а не пассивно отвечала на движение плит.
Разумеется, подобное исследование следует повторить в других местах, чтобы доказать его состоятельность. Пока ничего не доказано и не опровергнуто, просто получена новая информация, с которой предстоит работать и работать.
Результаты исследования опубликованы в журнале Nature Geoscience.
Источник: КОМПЬЮЛЕНТА
Геологи выяснили, что наша планета обзавелась твердой корой почти сразу после своего возникновения. Это значит, что Земля была пригодной для жизни уже практически изначально.
Земля 4,3 млрд лет назадРезультаты исследования, проведенного американскими учеными из Висконскинского университета, опубликованы в журнале Nature Geoscience.
Планета Земля сформировалась около 4,6 миллиардов лет назад. Считается, что долгое время она представляла собой шар из расплавленной магмы, на котором не могли существовать никакие живые организмы. Авторы статьи поставили под сомнение этот взгляд, проанализировав цирконы, извлеченные из песчаников в Западной Австралии.
Цирконы - это микроскопические кристаллики древних минералов, включенные в состав более молодых пород. С помощью уран-свинцового радиоизотопного метода исследователи показали, что возраст изученных ими цирконов составляет 4,4 миллиарда лет. Это значит, что уже тогда земная кора была частично отвердевшей.
Уран-свинцовый метод основан на том, что с течением времени изотопы урана превращаются в изотопы свинца. Ученые отмечают, что в кристаллах циркона им встретились отдельные кластеры, обогащенные изотопами свинца, что свидетельствует об их относительной «молодости». Вероятно, они попали в кристаллы при их вторичной переплавке.
«У нас нет доказательств, что жизнь существовала на Земле на первых этапах ее истории, однако теоретически ничто не мешало ей появиться уже 4,3 миллиарда лет назад», -- пояснил Джон Уэллей, соавтор статьи. По словам исследователей, земная кора отвердела вскоре после гипотетического столкновения расплавленной Земли с другим небесным телом, в результате которого появилась Луна.
Источник: infox.ru
Химические остатки участка земной коры, погрузившегося глубоко в мантию, со временем могут вновь выйти на поверхность в совершенно другом месте — например, на каком-нибудь далёком вулканическом острове.
Остатки земной коры, затонувшей около 2,5 млрд лет назад, вновь поднялись благодаря восходящему потоку в мантии. (Иллюстрация Nature.)Анализ вулканической породы на одном из островов южной части Тихого океана позволил учёным предположить, что этот процесс занимает более 2 млрд лет.
Соавтор Рита Кабраль из Бостонского университета (США) отмечает, что химический и изотопный состав мантии варьируется от места к месту. Возможно, это результат опускания кусков коры, но конкретных доказательств тому до сих пор получено не было.
За ними исследователи отправились на остров Мангаиа — самый южный из островов Кука. Местные вулканические породы, сформированные около 20 млн лет назад, сильно выветрились, но сернистые минералы, заключённые в кристаллах оливина, устойчивых к выветриванию и сформировавшихся на глубине в несколько километров, всё ещё хранят ту «химию», которая предшествовала извержению, что вывело их на поверхность планеты.
А состав красноречив! Например, г-жа Кабраль отмечает, что доля изотопа серы-33 много ниже показателя, типичного для земной коры. Хотя к этой аномалии могут привести и биологические процессы, последние одновременно создали бы аномально высокую концентрацию серы-34, но в образцах с Мангаиа этого нет.
Наиболее вероятным источником пород, бедных серой-33, учёные считают мантийный материал, который содержит остатки коры, затонувшей или иным образом оказавшейся под поверхностью планеты по крайней мере 2,45 млрд лет назад, ещё до того, как фотосинтезирующие организмы приступили к накачиванию атмосферы кислородом. Когда кислорода было мало, химические реакции, протекавшие под действием солнечного света, естественным образом должны были создать сернистые соединения с малым содержанием серы-33. Позднее озоновый слой, ставший результатом кислородной катастрофы, подавил эти процессы.
В какой-то момент материал с границы коры и мантии поднялся вновь вместе с так называемым мантийным плюмом (восходящим потоком). Г-жа Кабраль просит обратить внимание на малую интенсивность перемешивания материала в мантии, ведь этот кусок породы вышел обратно на поверхность почти в том же виде, в каком затонул. Возможно, в мантии можно найти целое «кладбище» не тронутых временем древних литосферных плит.
Можно ли считать полученные данные свидетельством существования тектоники по крайней мере 2,45 млрд лет назад? Исследователи не спешат делать такой вывод. По их мнению, в то время планета была ещё молода и горяча, поэтому данный участок коры мог затонуть не из-за субдукции (захождения одной литосферной плиты под другую, как это происходит сегодня), а каким-то иным образом. Действительно, геохимик Роберт Стерн из Техасского университета в Далласе (США) полагает, что материал с низким содержанием серы-33 мог образоваться не на поверхности Земли, а в «подбрюшье» континентальной коры, после чего отвалиться и затонуть в мантии. Нечто подобное кое-где случается и сейчас.
Результаты исследования опубликованы в журнале Nature.
Источник: КОМПЬЮЛЕНТА
Земная кора неоднородна: она подразделяется на более лёгкую континентальную и плотную океаническую. Первая толще (30–40 км) как раз за счёт своей лёгкости; именно это позволяет ей настолько возвышаться, плавая в мантии.
По общепринятым представлениям, тектонические плиты сталкиваются, океаническая кора погружается в мантию, где на определённой глубине частично плавится, после чего расплавленная порода снова возносится на поверхность. Так формируются континенты.
Состав континентальной коры соответствует таковому коры океанической, которая расплавилась настолько, что от неё осталось 10–30%. К сожалению, концентрации основных химических компонентов в повторно затвердевшей породе не позволяют судить о том, на какой глубине происходило смешивание. Необходимо знать, каким был состав остальных 70–90%.
Дабы нащупать подходы к решению этой проблемы, Торстен Нагель из Боннского университета и Карстен Мюнкер из Кёльнского университета (оба — ФРГ) проанализировали старейшие (3,8 млрд лет) образцы континентальной коры, которые находятся в западной части Гренландии.
Прежде чем магма отделится от коренной подстилающей породы, полужидкая порода и остаток твёрдых минералов активно обмениваются микропримесями. «У каждого минерала — свой способ отделения при плавлении рассеянных элементов, — поясняет соавтор Элис Хоффманн из Боннского университета. — Иными словами, концентрация микроэлементов в расплаве указывает на состав остаточной коренной породы».
Ну а концентрация микропримесей в старейшей континентальной породе должна была позволить учёным реконструировать первоначальную коренную породу, чтобы выяснить, на какой глубине образовалась континентальная кора.
Исследователи провели компьютерное моделирование состава коренных и расплавленных пород, которые могли возникнуть в результате частичного плавления океанической коры на различной глубине и при различной температуре. Результаты сравнили с наличной концентрацией микропримесей в старейших континентальных породах.
Выяснилось, что кора первых континентов, скорее всего, сформировалась на глубине 30–40 км. И это означает, что в архее океаническая кора могла в некотором смысле «сочиться» континентальными породами, поскольку 4 млрд лет назад Земля была ещё довольно горяча.
Выходит, первые континенты возникали вовсе не в зонах субдукции (кстати, есть сомнения, что эти зоны в то время существовали).
Источник: КОМПЬЮЛЕНТА
27-06-2013 Просмотров:18331 Вирусы (Virus) Антоненко Андрей
Ви́рус (от лат. virus — яд, ядовитое начало) — мельчайшие возбудители инфекционных болезней (рис. 1). До конца 19 в. термин «вирус» использовался в медицине для обозначения любого инфекционного агента, вызывающего...
23-03-2016 Просмотров:7127 Новости Палеонтологии Антоненко Андрей
Ученые из США и Германии нашли в янтаре из Мьянмы прекрасно сохранившиеся остатки древних ящериц, возрастом 99 млн лет. Это самые древние окаменелости ящериц из известных сегодня науке. Благодаря этим...
04-05-2015 Просмотров:8167 Новости Метеорологии Антоненко Андрей
Пыль из Сахары охлаждает Иберийский полуостров. К такому выводу пришли ученые из университетов Экстремадуры (Бадахос, Испания) и Эворы (Португалия) в ходе совместного исследования, подробные результаты которого изложены в статье в...
13-11-2013 Просмотров:9436 Новости Эволюции Антоненко Андрей
В 2006 году генетики наложили последовательности ДНК нынешних разновидностей больших кошек друг на друга и предположили, что неизвестный предок нынешних тигров, львов, леопардов и ягуаров жил в Средней Азии 10–11 млн...
25-04-2013 Просмотров:9540 Новости Палеонтологии Антоненко Андрей
Если присмотреться внимательнее практически к любой современной птице, можно заметить, что ее бедра расположены практически горизонтально. Почему появилась и как развивалась эта столь необычная для других животных поза, выяснили британские...
Ученые обнаружили на территории Баварии останки одной из первых пираний Земли, чьи зубы были приспособлены для обдирания мяса с костей рыб, динозавров и других крупных животных юрского периода. Ее описание было представлено в журнале Current Biology. Найденная…
Чтобы получить наиболее эффектный узор, который отпугивал бы хищников, бабочки геликонии используют сложную эволюционно-генетическую технику обмена генами между видами. Геликонии были открыты в американских тропиках и субтропиках в прошлом веке и…
Американские палеонтологи разработали методику, позволяющую определять плотность и структуру первобытного растительного мира. Результаты их исследования опубликованы в журнале Science. Ученые во главе с Риган Данн (Reagan Dunn) из Музея Естественной истории и культуры имени…
Новые расчеты, публикуемые журналом The American Naturalist, позволили исправить давнюю ошибку. На нашей планете, оказывается, живет не несколько десятков миллионов видов живых организмов, а «лишь» несколько миллионов. Столь крупная ошибка…
Слон и мышьЧтобы увеличиться от размера мыши до размера слона, млекопитающим необходима смена не менее 24 миллионов поколений. К такому выводу пришли австралийские палеонтологи. Вычислением максимально скорости увеличения и уменьшения габаритов животных…
Большинство бактерий имеют клеточную стенку — слоистую структуру, состоящую из сложномодифицированных углеводов и окружающую клетку поверх плазматической мембраны. Собственно говоря, в норме у всех бактерий такая стенка есть, и считается,…
О том, как менялся уровень Мирового океана, ученые узнали при помощи отложений простейших организмов - фораминифер в болотах Северной Каролины. Оказалось, что за последние две тысячи лет океан быстрее всего…
150 млн лет назад на вершине европейской морской пищевой цепи находились огромные крокодилы, один из которых разрывал добычу, а другой засасывал. Изображение Дмитрия БогдановаPlesiosuchus и Dakosaurus были настолько жуткими хищниками, что…
Эксперименты, проведённые группой американских учёных, поставили под сомнение общепринятый взгляд на птериготидов (семейство ракоскорпионов) как на одно из самых высоких звеньев пищевой цепи палеозойского океана. Вверху: Acutiramus, хватающий добычу (мягкотелую и…